Physics-Informed Neural Nets for Control of Dynamical Systems

نویسندگان

چکیده

Physics-informed neural networks (PINNs) impose known physical laws into the learning of deep networks, making sure they respect physics process while decreasing demand labeled data. For systems represented by Ordinary Differential Equations (ODEs), conventional PINN has a continuous time input variable and outputs solution corresponding ODE. In their original form, PINNs do not allow control inputs neither can simulate for long-range intervals without serious degradation in predictions. this context, work presents new framework called Physics-Informed Neural Nets Control (PINC), which proposes novel PINN-based architecture that is amenable to \emph{control} problems able longer-range horizons are fixed beforehand. The account initial state system action. PINC, response over complete horizon split such each smaller interval constitutes ODE conditioned on values action interval. whole formed feeding back predictions terminal as next This proposal enables optimal dynamic systems, integrating priori knowledge from experts data collected plants applications. We showcase our two nonlinear systems: Van der Pol oscillator four-tank system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural-Smith Predictor Method for Improvement of Networked Control Systems

Networked control systems (NCSs) are distributed control systems in which the nodes, including controllers, sensors, actuators, and plants are connected by a digital communication network such as the Internet. One of the most critical challenges in networked control systems is the stochastic time delay of arriving data packets in the communication network among the nodes. Using the Smith predic...

متن کامل

observational dynamical systems

چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...

15 صفحه اول

jordan c-dynamical systems

in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...

15 صفحه اول

Property (T) for C*-dynamical systems

In this paper, we introduce a notion of property (T) for a C<span style="font-family: txsy; font-size: 7pt; color: #000000; font-style: norm...

متن کامل

Adaptive Neural Network-Based Predictive Control for Nonlinear Dynamical Systems

In the paper, we propose a predictive control scheme using a neural network-based prediction model for nonlinear processes. To identify the system dynamics, we approximate the nonlinear function with an affine function of some of its arguments and construct a special type of prediction model using three-layered feedforward neural networks. Using some available inputoutput data pairs of the plan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science Research Network

سال: 2023

ISSN: ['1556-5068']

DOI: https://doi.org/10.2139/ssrn.4346399